Real Analysis Qualifier Exam-August 2004

1. (Do ONLY four from the following five statements) Prove or disprove, by a counterexample, the following statements:
(a) (5 points) A countable subset of \mathbb{R} has Lebesgue measure zero.
(b) (5 points) If a subset of \mathbb{R} has Lebesgue measure zero then it is countable.
(c) (5 points) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is integrable then so is f^{2}.
(d) (5 points) If $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ are Lebesgue measurable functions such that $f_{n} \rightarrow f$ a.e. then $f_{n} \rightarrow f$ in measure.
(e) (5 points) There is a Lebesgue measurable set which is not in the Borel σ-algebra.

Do ONLY one of the Problems 2 and 3.

2. (10 points) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous then it maps closed sets into Lebesgue measurable sets.
3. (10 points) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is such that $|f(x)-f(y)| \leq 8|x-y|$, for all $x, y \in \mathbb{R}$, then it maps sets of Lebesgue measure zero into sets of Lebesgue measure zero.

Do ONLY one of the Problems 4 and 5.

4. (10 points) Let (X, \mathcal{M}, μ) be a measure space, and $f: X \longrightarrow(0, \infty)$ be a measurable function. Show that $\frac{1}{f}$ is also measurable.
5. (10 points) Let (X, \mathcal{M}, μ) be a measure space. If $f_{n}: X \rightarrow \mathbb{R}$ is a sequence of measurable functions on X then the set of all points $x \in X$ where $\lim _{n \rightarrow \infty} f_{n}(x)$ exists is a measurable set.
6. (15 points) (Dominated Convergence Theorem) Let (X, \mathcal{M}, μ) be a measure space and $\left\{f_{n}\right\}$, and g be integrable functions such that:
(a) $f_{n} \longrightarrow f$ a.e. in X,
(b) $\left|f_{n}\right| \leq g$, for all n.

Then show that

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int \lim _{n \rightarrow \infty} f_{n}
$$

Do ONLY one of the Problems 7 and 8.

7. (15 points) Compute the following limit. Justify your steps.

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{8 n^{4}+\cos \left(n^{2} x^{2}+1\right)}{4 n^{4}+x^{4}} e^{-3 x} d x
$$

8. (15 points) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a Lebesgue integrable function then show that its Fourier transform

$$
\widehat{f}(\xi) \doteq \int_{\mathbb{R}} e^{-i x \xi} f(x) d x, \quad \xi \in \mathbb{R}
$$

is a continuous function.

Do ONLY one of the Problems 9 and 10.

9. (15 points) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue integrable function. Show that for any $\varepsilon>0$ there is a $\delta>0$, depending on ε, such that

$$
\int_{A}|f(x)| d x<\varepsilon
$$

for any Lebesgue measurable set A with $m(A)<\delta$.
10. (15 points) Let (X, \mathcal{M}, μ) be a measure space. Prove that for any $\epsilon>0$ and any integrable function $f: X \rightarrow \mathbb{R}$, one has

$$
\mu\{x:|f(x)| \geq \epsilon\} \leq \frac{1}{\epsilon} \int_{X}|f| d \mu .
$$

Do ONLY one of the Problems 11 and 12.

11. (15 points) State and prove Fatou's Lemma.
12. (15 points) Give a clear and brief description of the construction of the Lebesgue measure in \mathbb{R}, starting with the elementary class of the half-open intervals. Do not give proofs.
